- Sie können den Aufbau und Inhalt von Routing- Tabellen erläutern und den Zusammenhang zum Netzwerkschema aufzeigen.
- Sie können die Unterschiede zwischen statischem und dynamischem Routing erklären.
- Sie können die Gründe für die Aufteilung eines Netzwerks in IP-Subnetze darlegen.

Modul 129

- Sie können die Verfahren zur (binären) Berechnung von IP-Subnetzen anwenden.
- Sie können den Aufbau und die Inhalte einer Netzwerkdokumentation beschreiben und anhand eines praktischen Beispiels wiedergeben.

6 Router auswählen und konfigurieren

- 6.1 Grundfunktion, Einsatzgebiete und Modelle
- 6.2 Typen und Anschlussmöglichkeiten
- 6.3 Arbeitsweise und Routing-Tabelle
- 6.4 Statisches Routing
- 6.5 Dynamisches Routing
- 6.6 Default-Route

6 Router auswählen und konfigurieren

- Wenn mehrere Netzwerke miteinander reden müssen, braucht es Router.
- Router können aber auch komplexere Aufgaben als Heim-Netzwerk mit Internet verbinden.

6.1 Grundfunktion, Einsatzgebiete und Modelle

6.1 Grundfunktion, Einsatzgebiete und Modelle

- Router verbindet Datennetze miteinander.
- Untersucht Datenpakete auf Layer 3 und leitet sie je nach Zieladresse weiter.
- Einsatzgebiete:
 - LAN an Internet anbinden (WAN-Verbindung).
 - Grössere LANs in Subnetze aufteilen.
 - Zwei LANs über WAN-Verbindung verbinden.
 - Remote Access ermöglichen
 - Grosse Provider-Netze miteinander verbinden (Internet-Backbone)

Zeit: 10 min

Hilfe: Internet

Gruppe: Einzelarbeit / Partnerarbeit

Auftrag:

Recherchieren Sie im Internet und schauen Sie Sich die Spezifikationen von verschiedenen Routern an.

- Notieren Sie Sich die Wörter, die Ihnen nichts sagen.
- Besprechen Sie diese mit Ihrem Nachbarn und vergleichen Sie.
- Besprechung der Wörter im Plenum.
- Beantworten Sie die Frage: Wozu können Router eingesetzt werden?

6.1 Grundfunktion, Einsatzgebiete und Modelle

- Viele unterschiedliche Bauarten.
- Preisspanne zwischen 20 CHF und 200'000 CHF.

6.2 Typen und Anschlussmöglichkeiten

6.2 Typen und Anschlussmöglichkeiten

- Jeder PC könnte als Router arbeiten.
 - Benötigt spezielle Software (meiste OS haben Grundfunktionen).
 - Benötigt mehrere Netzwerkschnittstellen.
- Dedizierte Router sind Computer mit optimiertem Betriebssystem.
- Routing-Funktionen sind in Software implementiert.
- Software lässt sich so leicht erweitern.
- Router haben diverse Schnittstellen.
- Teurere Router haben modular aufbaubare Schnittstellen.

Wichtige Auswahlkriterien:

- Zuverlässigkeit
- Geschwindigkeit
- Verfügbare Zusatzfeatures

- Im Vergleich zu Switches arbeiten Router langsam (Software-Steuerung).

Modul 129

- Router verbindet auf Layer 3 zu einem grossen, logischen Netz.
- Bildet verschiedene Kollisionsdomänen.
- Unterbricht MAC-Broadcasts und entlastet so Teilnetze.
- Grosse Netze (Internet) stellen verschiedene Wege von Empfänger zu Sender zur Verfügung.
 - Hohe Ausfallsicherheit.
 - Router muss wissen, welches der beste Weg von A Z ist.
 - Router muss wissen, welche Wege momentan nicht verfügbar sind.
 - Router muss also Daten über das Gesamtnetz haben.
 - Diese Informationen gibt es in der Routing-Tabelle.

Seite 2

6.3 Arbeitsweise und Routing-Tabelle

Statisches Routing: Routen werden von Netzwerkadministrator eingegeben.

Aufwändig in grossen Netzen.

Dynamisches Routing: Informationen zu Routen von anderen Routern.

Berechnet Routing-Tabelle selbstständig.

Routing-Protokolle: RIP, IGRP, OSPF, BGP

- Router durchsucht Routing-Tabelle für jedes Paket.
- Jedes Interface hat eine eigene IP-Adresse (Verbindung zweier Netze).
- Routing-Tabelle beinhaltet keine Wege oder IP-Adressen.
- Routing-Tabelle beinhaltet nur Information zu ganzen IP-Netzen.

Beispiel einer einfachen Routing-Tabelle:

Informatik

Destination Network (Netzadresse des Zielnetzes mit Netzmaske)	Next Hop (Nächster Router auf dem Weg zum Ziel, Weiter an)	Metric (hier: Hop Count)	Interface (auf diesem Router)
192.168.1.0/255.255.255.0	_	0	e0
192.168.88.0/255.255.255.0	-	0	s0
192.168.2.0/255.255.255.0	192.168.88.2	1	s0

Destination Network: Ziel-Netzwerk

Adresse des nächsten Routers Next Hop:

Wie gut ist dieser Weg (lang, schnell, zuverlässig, unzuverlässig, usw.) Metric:

Hop Count: Anzahl Zwischenstationen bis zum Ziel.

Über welche Router-Schnittstelle müssen Pakete versendet werden. Interface:

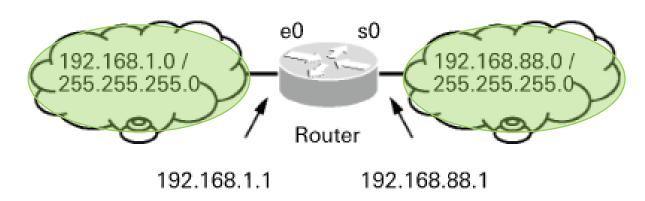
Seite 2

6.3 Arbeitsweise und Routing-Tabelle

Interpretation Routing-Tabelle:

Informatik

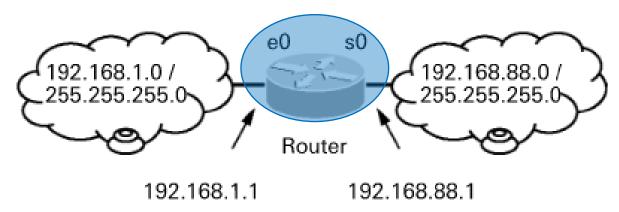
Destination Network (Netzadresse des Zielnetzes mit Netzmaske)	Next Hop (Nächster Router auf dem Weg zum Ziel, Weiter an)	Metric (hier: Hop Count)	Interface (auf diesem Router)
192.168.1.0/255.255.255.0	_	0	e0
192.168.88.0/255.255.255.0	-	0	s0
192.168.2.0/255.255.255.0	192.168.88.2	1	s0


Die ersten beiden Zeilen besagen, dass die IP-Netze 192.168.1.0/ 255.255.255.0 und 192.168.88.0/
255.255.255.0 direkt an diesen Router angeschlossen sind. Weil diese Netze direkt angeschlossen sind, gibt es keinen Next Hop.

Interpretation Routing-Tabelle:

Destination Network (Netzadresse des Zielnetzes mit Netzmaske)	Next Hop (Nächster Router auf dem Weg zum Ziel, Weiter an)	Metric (hier: Hop Count)	Interface (auf diesem Router)
192.168.1.0/255.255.255.0	-	0	e0
192.168.88.0/255.255.255.0	-	0	s0
192.168.2.0/255.255.255.0	192.168.88.2	1	s0

Modul 129


Die ersten beiden Zeilen besagen, dass die IP-Netze 192.168.1.0/ 255.255.255.0 und 192.168.88.0/ 255.255.2 direkt an diesen Router angeschlossen sind. Weil diese Netze direkt angeschlossen sind, gibt es keinen Next Hop.

Interpretation Routing-Tabelle:

Destination Network (Netzadresse des Zielnetzes mit Netzmaske)	Next Hop (Nächster Router auf dem Weg zum Ziel, Weiter an)	Metric (hier: Hop Count)	Interface (auf diesem Router)
192.168.1.0/255.255.255.0	-	0	e0
192.168.88.0/255.255.255.0	-	0	s0
192.168.2.0/255.255.255.0	192.168.88.2	1	s0

- Die ersten beiden Zeilen besagen, dass die IP-Netze 192.168.1.0/ 255.255.255.0 und 192.168.88.0/ 255.255.255.0 direkt an diesen Router angeschlossen sind. Weil diese Netze direkt angeschlossen sind, gibt es keinen Next Hop.

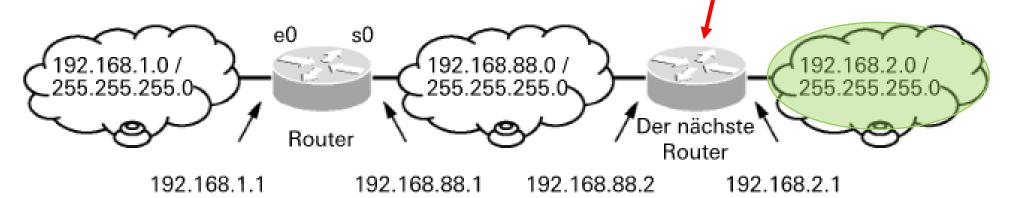
Seite 2

6.3 Arbeitsweise und Routing-Tabelle

Interpretation Routing-Tabelle:

Informatik

Destination Network (Netzadresse des Zielnetzes mit Netzmaske)	Next Hop (Nächster Router auf dem Weg zum Ziel, Weiter an)	Metric (hier: Hop Count)	Interface (auf diesem Router)
192.168.1.0/255.255.255.0	_	0	e0
192.168.88.0/255.255.255.0	-	0	s0
192.168.2.0/255.255.255.0	192.168.88.2	1	s0

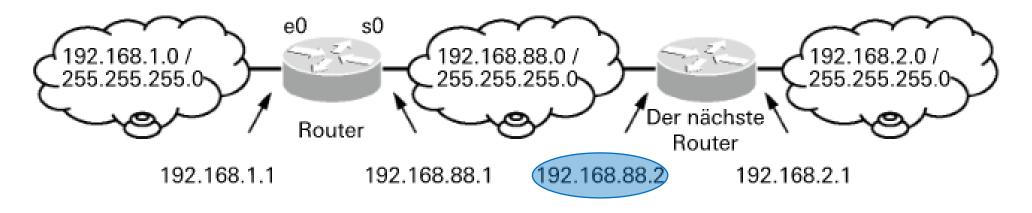

Die dritte Zeile bedeutet, dass ein IP-Netz 192.168.2.0/ 255.255.255.0 hinter einem weiteren Router (Metric 1) liegt und Datenpakete, die in dieses IP-Netz gehen sollen, zunächst an die IP-Adresse 192.168.88.2 (nächster Router) geschickt werden müssen.

Interpretation Routing-Tabelle:

Informatik

Destination Network (Netzadresse des Zielnetzes mit Netzmaske)	Next Hop (Nächster Router auf dem Weg zum Ziel, Weiter an)	Metric (hier: Hop Count)	Interface (auf diesem Router)
192.168.1.0/255.255.255.0	_	0	e0
192.168.88.0/255.255.255.0	-	0	s0
192.168.2.0/255.255.255.0	192.168.88.2	1	s0

Die dritte Zeile bedeutet, dass ein IP-Netz 192.168.2.0/ 255.255.255.0 hinter einem weiteren Router (Metric 1) liegt und Datenpakete, die in dieses IP-Netz gehen sollen, zunächst an die IP-Adresse 192.168.88.2 (nächster Router) geschickt werden müssen.

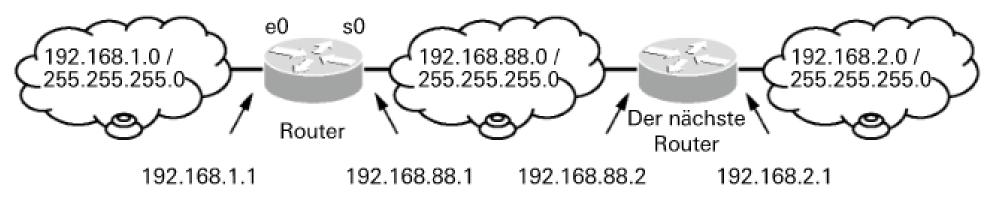


Interpretation Routing-Tabelle:

Informatik

Destination Network (Netzadresse des Zielnetzes mit Netzmaske)	Next Hop (Nächster Router auf dem Weg zum Ziel, Weiter an)	Metric (hier: Hop Count)	Interface (auf diesem Router)
192.168.1.0/255.255.255.0	_	0	e0
192.168.88.0/255.255.255.0	_	0	s0
192.168.2.0/255.255.255.0	192.168.88.2	1	s0

Die dritte Zeile bedeutet, dass ein IP-Netz 192.168.2.0/ 255.255.255.0 hinter einem weiteren Router (Metric 1) liegt und Datenpakete, die in dieses IP-Netz gehen sollen, zunächst an die IP-Adresse 192.168.88.2 (nächster Router) geschickt werden müssen.



Interpretation Routing-Tabelle:

Informatik

Destination Network (Netzadresse des Zielnetzes mit Netzmaske)	Next Hop (Nächster Router auf dem Weg zum Ziel, Weiter an)	Metric (hier: Hop Count)	Interface (auf diesem Router)
192.168.1.0/255.255.255.0	_	0	e0
192.168.88.0/255.255.255.0	-	0	s0
192.168.2.0/255.255.255.0	192.168.88.2	1	s0

Daraus kann Netzwerkschema abgeleitet werden:

Arbeitsblatt 7-1: Netzwerkschema aus Routingtabelle ableiten

Zeit: 30 min

Hilfe: LM, Internet

Gruppe: Einzelarbeit / Partnerarbeit

Auftrag:

Lösen Sie AB7-1.

6.4 Statisches Routing

- Einträge werden vom Administrator übernommen.
- Folgende Grundsätze sind zu beachten:
 - Jede Router-Schnittstelle braucht eine IP-Adresse.
 - Jede Router-Schnittstelle muss in einem anderen Netz liegen.
 - Alle Verbindungen zwischen den Routern sind IP-Netze und nicht IP-Adressen.
 - Alle Adressen einer Verbindung müssen im gleichen Netz liegen.
 - Netzadressen werden immer mit Subnetmaske angegeben.

Folgende Eingabemöglichkeiten haben sie:

Netzadresse

IP-Netz, welches erreicht werden soll. Verlangt wird das Netz und nicht die IP-Adresse! Netzmaske gehört dazu.

Next Hop

IP-Adresse des Routers, der vom aktuellen Router aus der nächste ist. Subnetmaske gehört dazu. In grossen Netzen passieren die Pakete viele Router bis zum Ziel.

Metric

Wie gut ist der Verbindungsweg? Meistgenutzte Metric: «Hop Count» ist Anzahl Router bis zum Ziel.

Interface

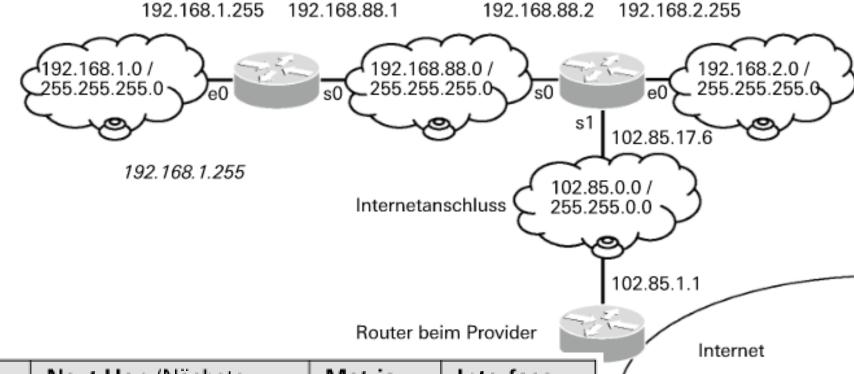
Netzwerkkarte des aktuellen Routers, über welche das Paket mit Next Hop geschickt wird.

Seite 2

6.4 Statisches Routing

Beispielbefehle der verschiedenen Betriebssysteme:

Aufgabe	Windows	Linux	Cisco IOS ^[1]
Routing-Tabelle ausgeben	route print	route -n	show ip route
Statische Route eintragen	route add 157.3.0.0 mask 255.255.0.0 202.55.80.1 [metric 1]	route add 157.3.0.0 netmask 255.255.0.0 gw 202.55.80.1 [dev eth0] [metric 1]	ip route 157.3.0.0 255.255.0.0 202.55.80.1
Default-Route eintragen	route add 0 0 0 0 mask 0.0.0.0 161.99.1.1	route add default gw 161.99.1.1	ip route 0.0.0.0 0.0.0.0 161.99.1.1
Statische Route löschen ^[2]	route del	route del	no ip route


6.5 Dynamisches Routing

6.5 Dynamisches Routing

- Einträge werden automatisch berechnet.
 - Anhand Infos von anderen Routern.
 - Dazu werden Protokolle verwendet.
 - Dedizierte Router können das von Haus aus, Windows braucht Software (Winroute oder Zebra).
- Sinnvoll bei Maschennetzen.
 - Wenn eine Verbindung ausfällt, konfiguriert Router die Route automatisch um.
 - Wenn neue Verbindung dazukommt, wird sie automatisch hinzugefügt.
- Nachteile:
 - Dynamisches Routing braucht Zeit, in der Pakete verloren gehen können.
 - Es können Routing-Loops entstehen: Pakete drehen sich im Kreis.

- Wenn Router IP-Adresse eines Paketes nicht findet, leitet er es an Default-Gateway weiter.
 - Ähnlich wie Default-Gateway bei PC.
 - In kleinen Netzen werden oft nur Default-Gateways und keine statischen Routen definiert.
 - So schickt Router alle Pakete zum Gateway des Internet-Providers.
 - So muss Router nur über internes Netz (Heimnetz) Bescheid wissen.
- Wenn jeder Router das ganze Internet abbilden müsste würde Übertragung viel zu lange dauern.
- Default-Gateway des Providers leitet Pakete an Backbone-Router weiter.
 - Hierarchie der Router.

Beispiel – Routing-Tabelle mit Default-Route:

Destination Network (Netzadresse des Zielnetzes mit Netzmaske)	Next Hop (Nächster Router auf dem Weg zum Ziel, Weiter an)	Metric (hier: Hop Count)	Interface (auf diesem Router)
192.168.1.0/255.255.255.0	-	0	e0
192.168.88.0/255.255.255.0	-	0	s0
102.85.0.0/255.255.0.0	-	0	s1
192.168.1.0/255.255.255.0	192.168.88.1	1	s0
0.0.0.0/0.0.0	102.85.1.1	-	s1

Routing-Tabellen und Netzwerkschema stehen eng in Verbindung zueinander!

Arbeitsblatt 7-2: Diverse Aufgaben

Zeit: 45 min

Hilfe: LM, Internet

Gruppe: Einzelarbeit / Partnerarbeit

Auftrag:

Lösen Sie das AB7-2.

- Router verbindet Layer 2 – Netze zu einem fast beliebig grossem, logischem Netz.

Modul 129

- Jeder Router sucht für Datenpaket anhand seiner Routing-Tabelle den besten Weg.
- Dedizierte Router sind auf Weitereiten von Datenpaketen optimiert.
- Beim statischen Routing muss für jedes IP-Netz eine Route konfiguriert werden.
- Pakete, für die der Router keine Route findet, werden an Default-Gateway weitergeleitet.
- Beim dynamischen Routing wird die Tabelle automatisch aufgebaut.
- Informationen tauschen mittels Protokollen Informationen aus.
- Aus diesen Information berechnen die Router die neuen Routen.